

<u>Heap</u>

A heap is a special tree-based data structure that satisfies the heap property:

- Max-Heap: The value of each parent node is greater than or equal to its children.
- Min-Heap: The value of each parent node is less than or equal to its children.

It is usually implemented as a **binary tree** (specifically, a **complete binary tree**), and stored as an **array**.

Complete Binary Tree-

- => All Levels are completely filled except the last levels.
- => At last level, Node should be filled from left side

Why Do We Use Heap

1. Priority Queues

Heaps are used to implement **priority queues**, where we need fast access to the highest or lowest priority element.

2. Efficient Operations

- o Insertion: 0(log n)
- Deletion (max/min): 0(log n)
- Get max/min: 0(1)

3. Heap Sort

Sorting algorithm that uses heaps to sort an array in $O(n \log n)$ time.

4. Finding Top K Elements

Efficiently find the k largest/smallest elements from a large dataset.

5. Used in Graph Algorithms

Algorithms like **Dijkstra's shortest path** and **Prim's minimum spanning tree** use heaps to pick the next minimum-cost edge or node.

6. Scheduling Tasks

Operating systems use heaps for **task scheduling**, giving priority to more important tasks.

Basic Operations on Heap

(i) Insertion (O(log n))

- 1. Insert new element at the **end** of the heap (last position).
- 2. Perform **Heapify Up** (**Bubble Up**): compare with parent and swap until heap property is restored.

(ii) Deletion (Remove Root) (O(log n))

- 1. Root element is removed (min in Min Heap, max in Max Heap).
- 2. Replace root with the **last element**.
- 3. Perform Heapify Down (Bubble Down) to restore heap property.

(iii) Heapify

- Process of converting an array into a valid heap.
- Done in **O(n)** time.

Applications of Heap

- 1. **Heap Sort** \rightarrow Efficient sorting algorithm with O(n log n).
- 2. **Priority Queues** → Tasks scheduled based on priority.
- 3. Graph Algorithms
 - Dijkstra's shortest path
 - o Prim's Minimum Spanning Tree
- 4. Median Finding (using two heaps).
- 5. Order Statistics (Kth largest/smallest element).

Types of Heaps

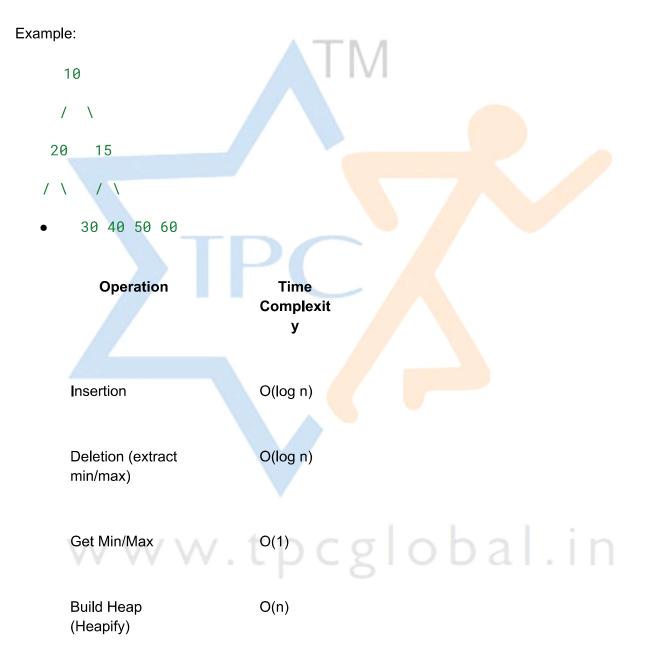
1. Max Heap

• Root contains the largest element.

Example:

50

/ \


30 40

10 20 35 25

.tpcglobal.in

2. Min Heap

• Root contains the smallest element.

Heap Sort

O(n log n)

www.tpcglobal.in